Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38652277

RESUMEN

Arnicolide D, a potent sesquiterpene lactone from Centipeda minima, has emerged as a promising anticancer candidate, demonstrating significant efficacy in inhibiting cancer cell proliferation, inducing apoptosis, and suppressing metastasis across various cancer models. This comprehensive study delves into the molecular underpinnings of Arnicolide D's anticancer actions, emphasizing its impact on key signaling pathways such as PI3K/AKT/mTOR and STAT3, and its role in modulating cell cycle and survival mechanisms. Quantitative data from preclinical studies reveal Arnicolide D's dose-dependent cytotoxicity against cancer cell lines, including nasopharyngeal carcinoma, triple-negative breast cancer, and human colon carcinoma, showcasing its broad-spectrum anticancer potential. Given its multifaceted mechanisms and preclinical efficacy, Arnicolide D warrants further investigation in clinical settings to validate its therapeutic utility against cancer. The evidence presented underscores the need for rigorous pharmacokinetic and toxicological studies to establish safe dosing parameters for future clinical trials.

2.
Neuromolecular Med ; 26(1): 14, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630350

RESUMEN

Multiple sclerosis (MS) is a chronic condition affecting the central nervous system (CNS), where the interplay of genetic and environmental factors influences its pathophysiology, triggering immune responses and instigating inflammation. Contemporary research has been notably dedicated to investigating the contributions of gut microbiota and their metabolites in modulating inflammatory reactions within the CNS. Recent recognition of the gut microbiome and dietary patterns as environmental elements impacting MS development emphasizes the potential influence of small, ubiquitous molecules from microbiota, such as short-chain fatty acids (SCFAs). These molecules may serve as vital molecular signals or metabolic substances regulating host cellular metabolism in the intricate interplay between microbiota and the host. A current emphasis lies on optimizing the health-promoting attributes of colonic bacteria to mitigate urinary tract issues through dietary management. This review aims to spotlight recent investigations on the impact of SCFAs on immune cells pivotal in MS, the involvement of gut microbiota and SCFAs in MS development, and the considerable influence of probiotics on gastrointestinal disruptions in MS. Comprehending the gut-CNS connection holds promise for the development of innovative therapeutic approaches, particularly probiotic-based supplements, for managing MS.


Asunto(s)
Microbioma Gastrointestinal , Esclerosis Múltiple , Humanos , Sistema Nervioso Central , Colon , Ácidos Grasos Volátiles , Inflamación
3.
ACS Omega ; 9(12): 13906-13916, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38559920

RESUMEN

The world needs sustainable energy resources with affordable, economic, and accountable sources. Consequently, energy innovation technologies are evolving toward electrochemical applications like batteries, supercapacitors, etc. The current study involves the solid blend biopolymer electrolyte (SBBE) with different compositions of sodium alginate blended with pectin via the casting technique. The characterization of the sample was tested by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, AC impedance, linear sweep voltammetry (LSV), and cyclic voltammetry (CV) analyses. Evidently, the sample NP4 (NaAlg/pectin = 60:40 wt %) has a higher conductivity of 1.26 × 10-7 and 3.25 × 10-6 S cm-1 at 303 and 353 K, respectively. The performances of the samples were analyzed with variations in temperature, frequency, and time responses to signify the blended nature of the electrolyte. Hence, the studied biopolymers can be constructed for electrochemical device applications.

4.
Sci Rep ; 14(1): 1618, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238395

RESUMEN

The elimination of hazardous industrial pollutants from aqueous solutions is an emerging area of scientific research and a worldwide problem. An efficient catalyst, Ag-CuO was synthesized for the degradation of methylene blue, the chemical sensing of ammonia. A simple novel synthetic method was reported in which new plant material Capparis decidua was used for the reduction and stabilization of the synthesized nanocatalyst. A Varying amount of Ag was doped into CuO to optimize the best catalyst that met the required objectives. Through this, the Ag-CuO nanocomposite was characterized by XRD, SEM, HR-TEM, EDX, and FTIR techniques. The mechanism of increased catalytic activity with Ag doping involves the formation of charge sink and suppression of drop back probability of charge from conduction to valance band. Herein, 2.7 mol % Ag-CuO exhibited better catalytic activities and it was used through subsequent catalytic experiments. The experimental conditions such as pH, catalyst dose, analyte initial concentration, and contact time were optimized. The as-synthesized nanocomposite demonstrates an excellent degradation efficacy of MB which is 97% at pH 9. More interestingly, the as-synthesized catalyst was successfully applied for the chemical sensing of ammonia even at very low concentrations. The lower limit of detection (LLOD) also called analytic sensitivity was calculated for ammonia sensing and found to be 1.37 ppm.

5.
J Biol Eng ; 18(1): 12, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273413

RESUMEN

BACKGROUND: Polymeric nanoparticles can be used for wound closure and therapeutic compound delivery, among other biomedical applications. Although there are several nanoparticle obtention methods, it is crucial to know the adequate parameters to achieve better results. Therefore, the objective of this study was to optimize the parameters for the synthesis, purification, and freeze-drying of chitosan nanoparticles. We evaluated the conditions of agitation speed, anion addition time, solution pH, and chitosan and sodium tripolyphosphate concentration. RESULTS: Chitosan nanoparticles presented an average particle size of 172.8 ± 3.937 nm, PDI of 0.166 ± 0.008, and zeta potential of 25.00 ± 0.79 mV, at the concentration of 0.1% sodium tripolyphosphate and chitosan (pH 5.5), with a dripping time of 2 min at 500 rpm. The most representative factor during nanoparticle fabrication was the pH of the chitosan solution, generating significant changes in particle size and polydispersity index. The observed behavior is attributed to the possible excess of sodium tripolyphosphate during synthesis. We added the surfactants poloxamer 188 and polysorbate 80 to evaluate the stability improvement during purification (centrifugation or dialysis). These surfactants decreased coalescence between nanoparticles, especially during purification. The centrifugation increased the zeta potential to 40.8-56.2 mV values, while the dialyzed samples led to smaller particle sizes (152-184 nm). Finally, freeze-drying of the chitosan nanoparticles proceeded using two cryoprotectants, trehalose and sucrose. Both adequately protected the system during the process, and the sugar concentration depended on the purification process. CONCLUSIONS: In Conclusion, we must consider each surfactant's benefits in formulations for selecting the most suitable. Also, it is necessary to do more studies with the molecule to load. At the same time, the use of sucrose and trehalose generates adequate protection against the freeze-drying process, even at a 5% w/v concentration. However, adjusting the percentage concentration by weight must be made to work with the CS-TPP NPs purified by dialysis.

6.
Naunyn Schmiedebergs Arch Pharmacol ; 397(3): 1455-1476, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37736836

RESUMEN

With cancer being a leading cause of death globally, there is an urgent need to improve therapeutic strategies and identify effective chemotherapeutics. This study aims to highlight the potential of crocetin, a natural product derived from certain plants, as an anticancer agent. It was  conducted an extensive review of the existing literature to gather and analyze the most recent data on the chemical properties of crocetin and its observed effects in various in vitro and in vivo studies. The study  particularly focused on studies that examined crocetin's impact on cell cycle dynamics, apoptosis, caspases and antioxidant enzyme levels, tumor angiogenesis, inflammation, and overall tumor growth. Crocetin exhibited diverse anti-tumorigenic activities including inhibition of tumor cell proliferation, apoptosis induction, angiogenesis suppression, and potentiation of chemotherapy. Multiple cellular and molecular pathways such as the PI3K/Akt, MAPK and NF-κB were modulated by it. Crocetin demonstrates promising anti-cancer properties and offers potential as an adjunctive or alternative therapy in oncology. More large-scale, rigorously designed clinical trials are needed to establish therapeutic protocols and ascertain the comprehensive benefits and safety profile of crocetin in diverse cancer types.


Asunto(s)
Neoplasias , Fosfatidilinositol 3-Quinasas , Vitamina A/análogos & derivados , Humanos , Vitamina A/uso terapéutico , Carotenoides/farmacología , Carotenoides/uso terapéutico , Antioxidantes/farmacología , Neoplasias/tratamiento farmacológico , Apoptosis
7.
J Biol Eng ; 17(1): 64, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37845737

RESUMEN

Hydrogels are three-dimensional structures with specific features that render them useful for biomedical applications, such as tissue engineering scaffolds, drug delivery systems, and wound dressings. In recent years, there has been a significant increase in the search for improved mechanical properties of hydrogels derived from natural products to extend their applications in various fields, and there are different methods to obtain strengthened hydrogels. Cationic guar gum has physicochemical properties that allow it to interact with other polymers and generate hydrogels. This study aimed to develop an ultra-stretchable and self-healing hydrogel, evaluating the influence of adding PolyOX [poly(ethylene oxide)] on the mechanical properties and the interaction with cationic guar gum for potential tissue engineering applications. We found that variations in PolyOX concentrations and pH changes influenced the mechanical properties of cationic guar gum hydrogels. After optimization experiments, we obtained a novel hydrogel, which was semi-crystalline, highly stretchable, and with an extensibility area of approximately 400 cm2, representing a 33-fold increase compared to the hydrogel before being extended. Moreover, the hydrogel presented a recovery of 96.8% after the self-healing process and a viscosity of 153,347 ± 4,662 cP. Therefore, this novel hydrogel exhibited optimal mechanical and chemical properties and could be suitable for a broad range of applications in different fields, such as tissue engineering, drug delivery, or food storage.

8.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37895863

RESUMEN

Oxidative stress, COX-2, LDHA and hyperglycemia are interlinked contributing pathways in the etiology, progression and metastasis of colon cancer. Additionally, dysregulated apoptosis in cells with genetic alternations leads to their progression in malignant transformation. Therefore, quinazolinones 3a-3h and 5a-5h were synthesized and evaluated as antioxidants, enzymes inhibitors and cytotoxic agents against LoVo and HCT-116 cells. Moreover, the most active cytotoxic derivatives were evaluated as apoptosis inducers. The results indicated that 3a, 3g and 5a were efficiently scavenged DPPH radicals with lowered IC50 values (mM) ranging from 0.165 ± 0.0057 to 0.191 ± 0.0099, as compared to 0.245 ± 0.0257 by BHT. Derivatives 3h, 5a and 5h were recognized as more potent dual inhibitors than quercetin against α-amylase and α-glucosidase, in addition to 3a, 3c, 3f and 5b-5f against α-amylase. Although none of the compounds demonstrated a higher efficiency than the reference inhibitors against COX-2 and LDHA, 3a and 3g were identified as the most active derivatives. Molecular docking studies were used to elucidate the binding affinities and binding interactions between the inhibitors and their target proteins. Compounds 3a and 3f showed cytotoxic activities, with IC50 values (µM) of 294.32 ± 8.41 and 383.5 ± 8.99 (LoVo), as well as 298.05 ± 13.26 and 323.59 ± 3.00 (HCT-116). The cytotoxicity mechanism of 3a and 3f could be attributed to the modulation of apoptosis regulators (Bax and Bcl-2), the activation of intrinsic and extrinsic apoptosis pathways via the upregulation of initiator caspases-8 and -9 as well as executioner caspase-3, and the arrest of LoVo and HCT-116 cell cycles in the G2/M and G1 phases, respectively. Lastly, the physicochemical, medicinal chemistry and ADMET properties of all compounds were predicted.

9.
Environ Res ; 237(Pt 1): 116691, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37574097

RESUMEN

Conductive agro-industrial wastes as accelerants in the anaerobic digestion (AD) of organic waste is a good technique for developing a rural circular economy, such as producing bioenergy and biofertilizer. This study disclosed the a role of sugar cane bagasse ash (SCBA) in enhancing the bioenergy (biogas) yield and digestate fertility via anaerobic co-digestion (AcoD) of buffalo dung (BD) and vegetable residue (VR) under mesophilic conditions (37 á´¼C). Firstly, an optimal BD/VR ratio (1:3) was determined based on biogas yield by introducing five different BD/VR ratios (1:0, 3:1, 1:1, 1:3, and 0:1) into AcoD systems. Secondly, the biogas yield was increased further by adding SCBA at five different concentrations (0, 0.5, 1, 1.5, and 2 wt%). Experimental results disclosed that the 1.5 wt% of SCBA gave the highest cumulative biogas yield (153.67 mL/g VS), COD removal rate (31.18%), and fertility (5.08%). Moreover, a framework is suggested to understand the role of SCBA in the enhanced DIET mechanism. This work documents an environmentally friendly and economical technique for developing a rural circular bioeconomy via the AD of organic agro-waste.

10.
Chemosphere ; 336: 139212, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37315854

RESUMEN

Plastics are still the most popular food packaging material and many of them end up in the environment for a long period. Due to packaging material's inability to inhibit microbial growth, beef often contains microorganisms that affect its aroma, colour and texture. Cinnamic acid is categorized as generally recognised as safe and is permitted for use in food. The development of biodegradable food packaging film with cinnamic acid has never been conducted before. This present study was aimed to develop a biodegradable active packaging material for fresh beef using sodium alginate and pectin. The film was successfully developed with solution casting method. The films' thickness, colour, moisture level, dissolution, water vapour permeability, bending strength and elongation at break were comparable to those of polyethylene plastic film in terms of these attributes. The developed film also showed the degradability in soil of 43.26% in a duration of 15 days. Fourier Transform Infrared (FTIR) spectra showed that cinnamic acid was successfully incorporated with the film. The developed film showed significant inhibitory activity on all test foodborne bacteria. On Hohenstein challenge test, a 51.28-70.45% reduction on bacterial growth was also observed. The antibacterial efficacy of the established film by using fresh beef as food model. The meats wrapped with the film showed significant reduction in bacterial load throughout the experimental period by 84.09%. The colour of the beef also showed significant different between control film and edible film during 5 days test. Beef with control film turned into dark brownish and beef with cinnamic acid turn into light brownish. Sodium alginate and pectin film with cinnamic acid showed good biodegradability and antibacterial activity. Further studies can be conducted to investigate the scalability and commercial viability of this environmental-friendly food packaging materials.


Asunto(s)
Embalaje de Alimentos , Pectinas , Animales , Bovinos , Alginatos/farmacología , Antibacterianos/farmacología , Plásticos
11.
Front Pharmacol ; 14: 1206334, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37346293

RESUMEN

Being the first or second cause of death worldwide, cancer represents the most significant clinical, social, and financial burden of any human illness. Despite recent progresses in cancer diagnosis and management, traditional cancer chemotherapies have shown several adverse side effects and loss of potency due to increased resistance. As a result, one of the current approaches is on with the search of bioactive anticancer compounds from natural sources. Neopeltolide is a marine-derived macrolide isolated from deep-water sponges collected off Jamaica's north coast. Its mechanism of action is still under research but represents a potentially promising novel drug for cancer therapy. In this review, we first illustrate the general structural characterization of neopeltolide, the semi-synthetic derivatives, and current medical applications. In addition, we reviewed its anticancer properties, primarily based on in vitro studies, and the possible clinical trials. Finally, we summarize the recent progress in the mechanism of antitumor action of neopeltolide. According to the information presented, we identified two principal challenges in the research, i) the effective dose which acts neopeltolide as an anticancer compound, and ii) to unequivocally establish the mechanism of action by which the compound exerts its antiproliferative effect.

12.
Front Mol Biosci ; 10: 1168298, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37228582

RESUMEN

Morusin is a natural product that has been isolated from the bark of Morus alba, a species of mulberry tree. It belongs to the flavonoid family of chemicals, which is abundantly present in the plant world and is recognized for its wide range of biological activities. Morusin has a number of biological characteristics, including anti-inflammatory, anti-microbial, neuro-protective, and antioxidant capabilities. Morusin has exhibited anti-tumor properties in many different forms of cancer, including breast, prostate, gastric, hepatocarcinoma, glioblastoma, and pancreatic cancer. Potential of morusin as an alternative treatment method for resistant malignancies needs to be explored in animal models in order to move toward clinical trials. In the recent years several novel findings regarding the therapeutic potential of morusin have been made. This aim of this review is to provide an overview of the present understanding of morusin's beneficial effects on human health as well as provide a comprehensive and up-to-date discussion of morusin's anti-cancer properties with a special focus on in vitro and in vivo studies. This review will aid future research on the creation of polyphenolic medicines in the prenylflavone family, for the management and treatment of cancers.

13.
Environ Res ; 231(Pt 1): 116093, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37178753

RESUMEN

Purified water is the most concerning issue these days, and utmost conventional practices are allied with various downsides. Therefore, an ecologically benign and easily amicable therapeutic approach is the requirement. In this wonder, nanometer phenomena bring an innovative change to the material world. It has the potential to produce nanosized materials for wide-ranging applications. The subsequent research highlights the synthesis of Ag/Mn-ZnO nanomaterial via a one-pot hydrothermal route with an efficient photocatalytic activity against organic dyes and bacteria. The outcomes revealed that the size of the particle (4-5 nm) and dispersion of spherically shaped silver nanoparticles intensely affected by employing Mn-ZnO as a support material. Use of silver NPs as a dopant activates the active sites of the support medium and provides a higher surface area to upsurge the degradation rate. The synthesized nanomaterial was evaluated against photocatalytic activity using Methyl orange and alizarin red as model dyes and confided that more than 70% of both the dyes degraded under 100 min duration. It is well recognize that the modified nanomaterial recreates an essential role in every light-based reaction, and virtually produced highly reactive oxygen species. The synthesized nanomaterial was also evaluated against E. coli bacterium both in light and dark. The zone of inhibition in the presence of Ag/Mn-ZnO was observed both in light (18 ± 0.2 mm) and dark (12 ± 0.4 mm). The hemolytic activity shows that Ag/Mn-ZnO has very low toxicity. Hence, the prepared Ag/Mn-ZnO nanomaterial might be an effective tool against the depletion of further harmful environmental pollutants and microbes.


Asunto(s)
Nanopartículas del Metal , Nanoestructuras , Óxido de Zinc , Fotólisis , Óxido de Zinc/toxicidad , Óxido de Zinc/química , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Plata/toxicidad , Plata/química , Escherichia coli , Nanoestructuras/toxicidad , Nanoestructuras/química
14.
Biomed Pharmacother ; 162: 114687, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37062215

RESUMEN

Cancer is still the leading cause of death worldwide, burdening the global medical system. Rosmarinic acid (RA) is among the first secondary metabolites discovered and it is a bioactive compound identified in plants such as Boraginaceae and Nepetoideae subfamilies of the Lamiaceae family, including Thymus masticmasti chinaythia koreana, Ocimum sanctum, and Hyptis pectinate. This updated review is to highlight the chemopreventive and chemotherapeutic effects of RA and its derivatives, thus providing valuable clues for the potential development of some complementary drugs in the treatment of cancers. Relevant information about RA's chemopreventive and chemotherapeutic effects and its derivatives were collected from electronic scientific databases, such as PubMed/Medline, Scopus, TRIP database, Web of Science, and Science Direct. The results of the studies showed numerous significant biological effects such as antiviral, antibacterial, anti-inflammatory, anti-tumour, antioxidant and antiangiogenic effects. Most of the studies on the anticancer potential with the corresponding mechanisms are still in the experimental preclinical stage and are missing evidence from clinical trials to support the research. To open new anticancer therapeutic perspectives of RA and its derivatives, future clinical studies must elucidate the molecular mechanisms and targets of action in more detail, the human toxic potential and adverse effects.


Asunto(s)
Lamiaceae , Neoplasias , Humanos , Extractos Vegetales/farmacología , Plantas/metabolismo , Cinamatos/farmacología , Depsidos/farmacología , Antioxidantes/farmacología , Neoplasias/tratamiento farmacológico , Ácido Rosmarínico
15.
Nanomaterials (Basel) ; 13(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36839035

RESUMEN

In this work, a manganese selenide/graphene oxide (MnSe/GO)-based composite was prepared for wet-chemical assisted method against organic dye; herein, methylene blue (MB) dye removal from the water was employed as a metal selenide-based photocatalyst. The synthesized MnSe/GO composite was systematically characterized by X-ray diffraction (XRD), Fourier transform electron microscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and UV-visible diffuse reflectance spectroscopy (UV-vis. DRS). The structural characteristic revealed the adequate synthesis of the sample with good crystallinity and purity of the obtained products. The morphological analysis indicates the formation of MnSe nanoflakes composed of tiny particles on their surface. At the same time, the GO nanosheets with high aggregation were formed, which may be due to the van der Waals forces. The bond interaction and compositional analysis studies confirmed and supported the structural findings with high purity. The optical analysis showed the bandgap energies of MnSe and their composites MnSe (1.7 eV), 7% GO-MnSe (2.42 eV), 14% GO-MnSe (2.6 eV), 21% GO-MnSe (3.02 eV), and 28% GO-MnSe (3.24 eV) respectively, which increase the bandgap energy after GO and MnSe recombination. Among different contents, the optimized 21% GO-MnSe composite displayed enhanced photocatalytic properties. For instance, a short time of 90 min was taken compared with other concentrations due to the narrow bandgap of MnSe and the highly conductive charge carrier's support, making the process to remove MB from water faster. These results show that the selenide-based photocatalyst can be an attractive candidate for future advanced photocatalysis applications.

16.
Molecules ; 27(16)2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-36014408

RESUMEN

In this study, we will present an efficient and selective adsorbent for the removal of Cu(II) ions from aqueous solutions. The silica-based adsorbent is functionalized by 2-phenylimidazo[1,2-a] pyridine-3-carbaldehyde (SiN-imd-py) and the characterization was carried out by applying various techniques including FT-IR, SEM, TGA and elemental analysis. The SiN-imd-py adsorbent shows a good selectivity and high adsorption capacity towards Cu(II) and reached 100 mg/g at pH = 6 and T = 25 °C. This adsorption capacity is important compared to other similar adsorbents which are currently published. The adsorption mechanism, thermodynamics, reusability and the effect of different experimental conditions, such as contact time, pH and temperature, on the adsorption process, were also investigated. In addition, a theoretical study was carried out to understand the adsorption mechanism and the active sites of the adsorbent, as well as the stability of the complex formed and the nature of the bonds.


Asunto(s)
Dióxido de Silicio , Contaminantes Químicos del Agua , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Modelos Teóricos , Piridinas , Dióxido de Silicio/química , Soluciones , Espectroscopía Infrarroja por Transformada de Fourier , Agua/química , Contaminantes Químicos del Agua/química
17.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35890189

RESUMEN

Colorectal cancer oncogenesis is linked to dysbiosis, oxidative stress and overexpression of CDK2. The 4H-pyran scaffold is considered an antitumoral, antibacterial and antioxidant lead as well as a CDK2 inhibitor. Herein, certain 4H-pyran derivatives were evaluated as antibacterial, antioxidant and cytotoxic agents against HCT-116 cells. Derivatives 4g and 4j inhibited all the tested Gram-positive isolates, except for B. cereus (ATCC 14579), with lower IC50 values (µM) than ampicillin. In addition, 4g and 4j demonstrated the strongest DPPH scavenging and reducing potencies, with 4j being more efficient than BHT. In cell viability assays, 4d and 4k suppressed the proliferation of HCT-116 cells, with the lowest IC50 values being 75.1 and 85.88 µM, respectively. The results of molecular docking simulations of 4d and 4k, inhibitory kinase assays against CDK2, along with determination of CDK2 protein concentration and the expression level of CDK2 gene in the lysates of HCT-116 treated cells, suggested that these analogues blocked the proliferation of HCT-116 cells by inhibiting kinase activity and downregulating expression levels of CDK2 protein and gene. Moreover, 4d and 4k were found to induce apoptosis in HCT-116 cells via activation of the caspase-3 gene. Lastly, compounds 4g, 4j, 4d and 4k were predicted to comply with Lipinski's rule of five, and they are expected to possess excellent physiochemical and pharmacokinetic properties suitable for in vivo bioavailability, as predicted by the SwissADME web tool.

18.
ACS Omega ; 7(22): 18443-18458, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35694504

RESUMEN

Colorectal carcinogenesis is a complex process, which is linked to dysregulation of human secretory phospholipases A2 (hsPLA2-G-IIA, hsPLA2-G-V, and hsPLA2-G-X), proteases (cathepsin-B, collagenase, thrombin, elastase, and trypsin), carbohydrate hydrolyzing enzymes (α-amylase and α-glucosidase), and free radical generating enzyme (xanthine oxidoreductase (XOR)). Therefore, some new quinazolinones were synthesized and evaluated as inhibitors against this array of enzymes as well as cytotoxic agents on LoVo and HCT-116 cells of colorectal cancer. Compounds 3g, 10, 8, 3c, and 1c exhibited promising cytotoxic effects with IC50 values ranging from 206.07 to 459.79 µM. Nine compounds showed promising enzymatic inhibitory effects, 3b, 3d, 3f, 5, 1a, and 12 (α-amylase), 8 (thrombin, elastase and trypsin), 10 (hsPLA2-G-IIA and hsPLA2-G-V), and 3f (α-glucosidase and XOR). Therefore, the most active inhibitors, were subjected to validated molecular docking studies to identify their affinities and binding modes. The expected physicochemical and pharmacokinetic features of the active candidates, 1a, 1c, 3b, 3c, 3d, 3f, 3g, 5, 8, 10, and 12 were predicted using bioavailability radar charts and boiled-egg graphical representations along with the Lipinski rule of five filter. Collectively, these studies showed the significance of derivatives 1c, 3b, 3c, 3d, 8, 10, and 12 as lead scaffolds for further optimization to develop enzymes inhibitors and anti-colorectal agents.

19.
ACS Omega ; 7(18): 16055-16062, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35571772

RESUMEN

1,4-Dihydropyridines (1,4-DHPs) hold a top-notch position in the pharmaceutical world due to a broader spectrum of applications, whereas the carboxylic moiety has been an integral part of the physiological world, effective food preservatives, and antimicrobial agents. Seeking the enormous potential and applications of these two classes, we worked to combine these to synthesize 2,2'-[3,5-bis(ethoxycarbonyl)-4-phenyl-1,4-dihydropyridine-2,6-diyl]diacetic acid the novel dicarboxylic derivatives of 1,4-DHP (9a-k) achieved via the electro-carboxylation of tetrasubstituted-1,4-dihydropyridines (8a-k) derivatives using Mg-Pt electrodes in an undivided cell. The targeted compounds were established by 1H, 13C NMR, IR, and ESI-MS. Further, the synthesized compounds show excellent resistance against various microbes and the activity increased 2-3 folds after the introduction of acid groups. Compound 9b (against E. coli, S. aureus, B. subtilis, A. niger, and P. glabrum), 9d (against E. coli, K. pneumonia, S. aureus, A. janus, and F. oxysporum), 9f (against E. coli and P. fluorescens), and 9k (against F. oxysporum and P. glabrum) were found to be highly active at 4 µg/mL with reference to standard amoxicillin and fluconazole. Further, the present synthetic protocol would open new gates for other researchers to develop new molecules by bioisosteres of these substrates.

20.
J Environ Manage ; 316: 115194, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35537267

RESUMEN

The oil spill represents one of the most important pollution sources for marine environments, that occurs due to tanker collisions, ship accidents, and platforms. Several techniques are used for treating oil spill disasters including chemical, physical, and biochemical. The use of chemicals, magnetite nanomaterials (MNMs) in particular, is one of the most applied techniques used for oil spill remediation due to their low cost, fast remediation, and reusability. This work aims to synthesize and use new ionic liquids (ILs) for the modification of MNMs surfaces to enhance their performance for crude oil uptake. For that, octadecylamine (OA) was reacted with epichlorohydrin (EH), followed by reaction with either diethylenetriamine (DT), or tetraethylenepentamine (TP) to obtain corresponding amines, OADT, and OATP, respectively. The produced amines were quaternized using acetic acid (AA) forming corresponding ILs, OADT-IL, and OATP-IL. The obtained ILs, OADT-IL, and OATP-IL were applied for modification of magnetite nanomaterials (MNMs) surface to obtain the surface-modified MNMs, DT-MNMs, and TP-MNMs, respectively. The surface-modified MNMs were characterized using different techniques including Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and contact angle. The efficacy of DT-MNMs, and TP-MNMs for heavy crude oil uptake (EMU) was evaluated. Further, the factors affecting on the crude oil uptake including MNMs: heavy crude oil ratio, and contact time were also evaluated. The data exhibited that, the EMU relatively declined as the ratio of DT-MNMs, and TP-MNMs decreased. Even at low MNMs:crude oil ratio (1:50), DT-MNMs, and TP-MNMs displayed EMU 87%, and 90%, respectively, which means 1 g of either DT-MNMs, or TP-MNMs can uptake 45 g, or 43.5 g, respectively. These values are high as compared with other studies that reported the use of MNMs for oil spill cleanup. Furthermore, the data indicated that the EMU increased as the contact time increased, and reached maximum EMU of 98% for both MNMs samples after 10 min.


Asunto(s)
Líquidos Iónicos , Nanoestructuras , Transportadores de Anión Orgánico , Contaminación por Petróleo , Petróleo , Aminas , Óxido Ferrosoférrico , Contaminación por Petróleo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA